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ABSTRACT 

Three-dimensional textural and volumetric image analysis holds great potential in understanding the image data 

produced by multi-photon microscopy. In this paper, an algorithm that quantitatively analyzes the texture and the 

morphology of vasculature in engineered tissues is proposed. The investigated 3D artificial tissues consist of Human 

Umbilical Vein Endothelial Cells (HUVEC) embedded in collagen exposed to two regimes of ultrasound standing wave 

fields under different pressure conditions. Textural features were evaluated using the normalized Gray-Scale Co-

occurrence Matrix (GLCM) combined with Gray-Level Run Length Matrix (GLRLM) analysis. To minimize error 

resulting from any possible volume rotation and to provide a comprehensive textural analysis, an averaged version of 

nine GLCM and GLRLM orientations is used. To evaluate volumetric features, an automatic threshold using the gray 

level mean value is utilized. Results show that our analysis is able to differentiate among the exposed samples, due to 

morphological changes induced by the standing wave fields. Furthermore, we demonstrate that providing more textural 

parameters than what is currently being reported in the literature, enhances the quantitative understanding of the 

heterogeneity of artificial tissues. 
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1. INTRODUCTION 

Tissue engineering is an important multidisciplinary field that combines biology, medicine, and engineering. Its potential 

arises from the ability to replace diseased or damaged tissues and organs or even to enhance their function. However, to 

successfully create such tissues, an appropriate microenvironment to organize the cells and the proteins into complex 

patterns that resemble the natural tissues is needed [1].  

Ultrasound Standing Wave Fields (USWF) have been demonstrated to non-invasively control the spatial distributions of 

cells within three-dimensional, collagen-based engineered tissues. Ultrasound-induced alignment of mouse embryonic 

myofibroblasts in collagen gels increases cell contractility and cell-mediated extracellular matrix reorganization [1]. 

Noninvasive organization of endothelial cells within collagen gels accelerates the formation of capillary sprouts that 

mature into branching networks throughout the three-dimensional hydrogel [2]. Both the rate of formation and 

morphology of the resultant vascular network are dependent upon the ultrasound field parameters used to produce the 

cellular alignment [3]. Multi-photon microscopy imaging techniques are employed to visualize these branching 

networks, as shown in Figure 1.  

 

 

 

 

 

 
Figure 1. Two Z-projected images show different cell patterns using 1MHz high-

pressure (left ) and 2MHz low-pressure (right) ultrasound parameters. 
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It was observed that at 1MHz, changing the pressure amplitude from low to high resulted in loosely aggregated cell 

bands at low pressure, while dense cell bands were formed at high pressure. Based on these differences in initial cell 

band density, we observed that the resulting vascular structure differed. Loosely aggregated cell bands led to the 

formation of dense vascular network. On the other hand, densely packed cell bands formed into sprouting networks with 

a vascular tree-like morphology. In 2MHz, the USWF pattern differs and the cell bands that are formed are closer 

together than those formed at 1 MHz. However, the low and high pressure amplitudes chosen for the 2 MHz exposures 

resulted in similar initial cell band density than the 1 MHz pressures used. So the low pressure of 0.08 MPa results in 

loosely aggregated cell bands while the high pressure of 0.2 MPa results in densely packed cell bands [2,3]. 

In this study, we utilize stacks of multi-photon microscopy images to develop three-dimensional textural and volumetric 

image analysis techniques to quantitatively characterize the structure of networks formed within various engineered 

tissues. To the best of our knowledge, due to the novelty of this technique, there is no preliminary work on quantitative 

image analysis of USWF induced vasculature network. We propose to improve previous work developed for other 

applications by combining two textural methods encompassing the whole volume. A review of previous work is 

discussed in the following paragraphs.  

In [4], an algorithm that quantifies biofilm structure by computing textural and areal (volumetric) parameters in two-

dimensional fashion was introduced. In [5], a three-dimensional image analysis of biofilm structures was proposed. As 

an improvement over previous work [6,7], the algorithm computed the parameters in three-dimensional fashion. It 

evaluated a 256 x 256 normalized gray level co-occurrence matrix (GLCM) in each of the X, Y, and Z directions to 

calculate textural parameters. Limiting the analysis to three directions reduces the accuracy of capturing changes that 

occur in other directions and makes the results vulnerable to any rotation that might happen to the images [9]. 

Furthermore, the results reported in this work were single value-type results that describe the whole volume by averaging 

the values of the three main orientations, which may not serve as a proper indication of the changes that happened in 

each orientation. Other quantization levels that could have shortened computational time were not discussed. Different 

volumetric parameters presented in this work were evaluated only in the three main orientations without ensuring volume 

connectivity. Their results were validated with digital phantoms, however, in our work we used actual biological samples 

as reference. 

In [8], the authors demonstrated an algorithm used to extract quantitative structural information about individual collagen 

fibers such as length, orientation, and the diameter of the fibers. The algorithm used the medial axis transform and a 

tracing technique to connect the fiber branches. By counting the voxels, they determined the length and the diameter of 

the fibers. Angles between X and Y and between X and Z were used to determine the orientation of the fibers. No 

textural analysis was performed in this work. 

In this paper, we present an algorithm that quantifies induced vasculature networks in engineered tissues. Our goal is to 

quantitatively differentiate between several pressure and frequency ultrasound field conditions. Our approach provides a 

complete three-dimensional quantification that captures the changes in nine different orientations for both textural and 

volumetric analysis. We utilize a three-dimensional connected component analysis to extract the volume of interest for 

more accurate and comprehensive quantification. A normalized GLCM is estimated from nine orientations to completely 

investigate textural information instead of relying only on the three main orientations. Our method combines the GLCM 

textural information alongside with GLRLM to provide a comprehensive and detailed overview of the textural 

information of the three-dimensional vasculature networks.  

The paper is organized as follows. In Section 2, we introduce our experimental data. In Section 3, we discuss the 

proposed algorithm in terms of preprocessing and volume quantification. Results are shown and analyzed in Section 4. 

Finally, Section 5 draws conclusions and discusses future work. 

 
2. EXPERIMENTAL DATA 

 

Human umbilical vein endothelial cells (HUVEC) were suspended in an unpolymerized type I collagen solution and 

were exposed to either a 1 or 2 MHz USWF at various USWF peak positive pressure amplitudes (1 MHz - sham, 0.1 

MPa, 0.3 MPa; 2 MHz - sham, 0.08 MPa, 0.2 MPa). Collagen solutions were allowed to polymerize during the 15 min 

exposure period to effectively maintain USWF-induced cell alignment after removal of the sound field. Exposure of 

HUVEC at the stated pressures resulted in either a homogeneous cell distribution (sham exposure), loosely aggregated 

cell bands (0.1 MPa at 1 MHz and 0.08 MPa at 2 MHz), or densely packed cell bands (0.3 MPa at 1 MHz and 0.2 MPa at 
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2 MHz).  Samples were incubated for 10 days post-USWF exposure and then fixed in 4% paraformaldehyde. These 

experiments were repeated three times for each condition. Standard immunofluorescence protocols were used to label 

HUVEC membranes with an antibody directed against CD31 and cell nuclei were identified by staining with DAPI. 

Samples were then examined using multi-photon immunofluorescence microscopy to noninvasively scan through the 

three-dimensional volume of the engineered tissue. Images were collected in the Z-direction in 1 µm step size generating 

stacks of 300 to 400 images. The spatial dimensions of each voxel are 2.5 x 2.5 x 1 µm
3
. 

 

3.  PROPOSED ALGORITHM 

 

To better understand, compare, and monitor the samples development, a three-dimensional image analysis to quantify the 

volume structure is needed. A preprocessing stage is required to enhance the stack of images before any further 

calculation. Figure 2 describes the entire process in terms of a flowchart.  
 

3.1 Preprocessing 

Multi-photon microscopy produces 16-bit depth images, however after close examination, three issues were identified. 

First, even though the images are stored in 16-bit depth, their gray level values never exceed the value of 4096, which 

means that the images, in fact, are 12-bit depth. To process and display the images without changing their intensity 

distribution, they were normalized by dividing each one by the maximum value. Second, the intensity distribution of the 

images follows a very narrow unimodal histogram centered at low intensity values. Such distribution produces poor, 

low-contrast images, which are difficult to deal with. To overcome this issue, a Contrast Limited Adaptive Histogram 

Equalization (CLAHE) was applied with a 7 x 7 pixels window size in order to enhance the contrast for better 

processing, while preventing the over amplification of noise that global or adaptive histogram equalization can produce 

in such cases as shown in Figure 3. Third, due to the staining of the samples, cellular debris is captured alongside the 

vasculature structure, which affects the images with a salt and pepper-type noise. To remove such noise, a three-

dimensional median filtering was performed with a cube of 3 x 3 x 3 voxels. Combining those preprocessing steps results 

in noise reduction while maintaining the high spatial frequency content in each image.  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 2.  The flowchart shows the proposed algorithm in terms 

of the preprocessing and the quantification steps.  

(b) 

Figure. 3. Difference in contrast enhancement between 

the original image (a), the histogram equalized (b), 

and the CLAHE (c). 

(a) 

(c) 
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3.2 Volume Segmentation 

To achieve accurate analysis, the effect of the uneven illumination needs to be eliminated from the background, and all 

the relatively small objects that weren't removed by the three-dimensional median filter and don't contribute to the 

volume of interest need to be removed. In order to achieve this goal, two main steps were applied. The first step aims to 

remove the background from each image, which will prevent the textural analysis from producing misleading results due 

to uneven illumination. This is done by thresholding each single image of the stack automatically using the mean value 

of each image, as shown in Figure 2. Other methods such as Otsu didn't work well due to the single peaked narrow 

intensity distribution of the images. However, an effect of over quantification might result due to small gaps or 

discontinuities that occur after thresholding. In order to reduce this effect, a three-dimensional smoothing filter is utilized 

before the thresholding step to connect such gaps between clusters. For more information about thresholding in tissue 

analysis, the reader is referred to [10], where different thresholding techniques for engineered tissue images have been 

evaluated and discussed.  

The second step includes a three-dimensional connected component analysis, where a 26-connectivity was used to ensure 

all the neighbors of each voxel are covered. By choosing different connected volume sizes and visually inspecting the 

results, we found that the volume of interest always gets extracted by choosing the largest connected volume. This step 

will ensure a connectivity of the volume of interest, while removing other regions that may contribute as noise. 

 

3.3 Textural Quantification 

To evaluate the textural parameters, two different textural analysis techniques were used, the Normalized Gray-Level 

Co-occurrence Matrix (GLCM), and the Gray-Level Run Length Matrix (GLRLM). The first method was computed 

using the average values of nine orientations of the spatial dependence matrices as described in Table 1.  
 

                 Table 1. Orientations in our analysis 

Plane XY YZ XZ 

Angle 0° 45° 90° 135° 45° 90° 135° 45° 135° 
 

The averaged values were utilized as suggested in [9] to prevent changes that might occur to the textural values if the 

images happen to rotate, and to capture every possible textural information in each direction. In every orientation angle, 

each element in the GLCM refers to the probability of finding two gray level values in neighboring pixels when the 

displacement equals one. Different quantization levels varying from 8 to 256 levels were tested for textural 

quantification, but huge differences in values were observed, so we used the quantization level of 256 for this analysis. 

Levels higher than 256 were not used due to processing time. Four textural parameters calculated on the largest 

connected volume using the GLCM method are presented below. 

3.3.1. Entropy (ENT) 

Entropy is a measure of randomness and is defined by 
      

     ∑∑ (   )     ( (   )) 

   

   

   

   

 

 

where N is the number of gray levels in the image after quantization, p(i, j) is the probability value in the GLCM at 

location (i, j). When the image is not uniform, the GLCM will contain many elements of small values, which results in a 

very large entropy value. In other words, a random texture will result in higher entropy values, while a smoother texture 

will result in lower entropy values. In our case, the entropy can serve also as a complexity measurement, where a higher 

value refers to a more complex structure. 

3.3.2.Energy (ENE) 

Energy is also called Angular Second Moment (ASM). This parameter was utilized as a measurement of cluster 

repetition and uniformity, and it is defined by 

(1) 
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For this parameter to reach its maximum value of 1, a few elements in the GLCM should be close to 1, while many 

elements should be close to 0. In other words, a higher energy value means more periodic and uniform clusters in the 

volume, while the ideal case happens when the volume has a constant intensity level where the energy value equals 1. 

3.3.3. Contrast (CON) 

Contrast measures the difference between the highest and the lowest intensity values of contiguous pixels and it is 

defined by 
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where the values range between 0 and  (N
2
). Higher contrast corresponds to busier texture and sharper, more frequent 

transitions between the gray levels.  

3.3.4. Homogeneity (HOM) 

Homogeneity measures the similarity and the smoothness between the intensity values of neighboring pixels. It is 

defined by 
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where higher homogeneity corresponds to smoother and more similar regions in the volume. 

The second textural quantification method utilizes the GLRLM to produce five features that describe volumetric textural 

information [11,12]. The GLRLM is a matrix with the number of intensity values as its rows, and the run-length values 

as the columns. Each entry (i,j) corresponds to the number of times that a certain intensity value i has a run of length j in 

a certain orientation. In [12], the authors suggested that the gray-level values to be grouped into 8 sets (levels) for a 64-

levels image, and the run lengths into 6 sets for a 64 by 64 image. We believe the reason behind this is to avoid irrelevant 

counting of very small runs and very close values of intensity levels, which may contribute in a negative way to the 

analysis.  Since our analysis is applied over the largest connected volume with no background intensity variation or 

noise, we need every single run length of the volume to be counted. Also, due to having 256 intensity levels, we grouped 

the gray-level values into 16 different sets. The advantage of using this method is that it provides textural information 

while incorporating some structural information. The following five features are described for further explanation. 

3.3.5. Short Run Emphasis (SRE) 

This feature measures and emphasizes the short runs in the image, and it is calculated by 
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where N and M are the row number and the column number of the GLRLM respectively, while p(i,j) is the entry value at 

location (i,j). A higher value corresponds to a higher amount of short runs  in the image, which indicates that the image 

contains a heterogeneous and irregular texture due to a busy structure. 

3.3.6. Long Run Emphasis (LRE) 

This feature emphasizes the long runs in the image, and it is calculated by 
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where higher values correspond to a higher amount of long runs in the image, which indicates that the image contains a 

homogeneous and coarse structural texture.  

3.3.7. Gray-Level Non-uniformity (GLN) 

The output of this function measures the intensity variation throughout an image, and it is calculated by 
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The lowest value occurs when the runs of the intensity levels are equally distributed throughout the image, higher values 

correspond to a fine textural structure. 

3.3.8.Run Length Non-uniformity (RLN) 

This feature measures the distribution of the runs throughout the lengths in the image, and it is defined by 
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The function has a low value when the image has a single intensity value, since the distribution of the runs is equal 

throughout the length. 

3.3.9. Run Percentage (RP) 

The output of this function is a ratio of the total number of the runs to the total number of pixels K in the image, and it is 

calculated by 

 

   
∑ ∑   

   
 
    (   )

 
 

where K also known as the total possible runs if the all the intensities have a run length of one. 

Combining the two previously mentioned methods, nine different parameters evaluated in nine directions provide us with 

a complete picture of how the heterogeneity of samples exposed to different regimes differs among each other. 

 

3.4  Volumetric Quantification 

Volumetric parameters were evaluated on the binary version of the images to quantify the morphological information of 

the induced vasculature networks. Features such as growth direction and volume percentage are presented in this paper. 

3.4.1. Growth Direction 

This parameter is computed in order to find in which direction the branching network is growing. To evaluate this 

parameter, an average run length algorithm was also utilized in the nine directions mentioned in Table 1. Higher values 

result when longer connected regions are examined. For example, if we measure the growth in XY-plane with 0º 

between two different objects, the object with the higher value will have a larger connected object in that direction. 

3.4.3 Volume Percentage (VP) 

This feature measures how much the extracted volume covers from the total size of the sample, and it is calculated by 

dividing the number of voxels of the extracted volume of interest over the total number of voxels of the sample. This 

analysis gives us an indication of how changes in frequency and pressure regimes will affect the size of the formed 

network structures. The actual size of each volume can be found by multiplying the volume of voxels with the spatial 

dimension of each voxel mentioned in Section 2. 
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4. RESULTS 

In this paper, we compare different experimental conditions consisting of two different frequency settings and pressure 

regimes. We use the sham samples as a reference to compare to. Also, since the experiments are independent, the sham 

results from all experiments were averaged. This step was taken after analyzing each sham sample and not finding 

noticeable differences among them. Tables 2 and 3 list textural parameters calculated by the GLCM and GLRLM 

methods respectively, while Table 4 shows the results calculated for the volumetric analysis.  

In Table 2, entropy is highest for the low peak positive pressure cases in both frequency regimes, i.e., 0.1 MPa for 1 

MHz, and 0.08 MPa for 2 MHz. These entropy values indicate the disruption of the network appearance compared to the 

sham values, which show more complex structure. On the other hand, the entropy value for the high peak positive 

pressure cases in both frequency settings is lowest, since the images contain highly packed sprouts with lower structural 

complexity. These results are further supported be the fact that energy and homogeneity are lowest, while contrast is 

maximum in the low-pressure cases, while the opposite is true for the high-pressure cases. 

In Table 3, the high-pressure samples have lower values of short runs and higher long run values compared to the sham 

samples. On the other hand, the opposite is true for the low-pressure samples. This indicates that the high-pressure 

regime tends to form denser, more uniform, and smoother regions with bands and long sprouts. However, the low 

pressure setting wasn't enough to force the cells to form thick bands, but it was enough to form short branches when 

comparing to the sham samples. This conclusion is further supported by the difference of the values in the rest of the 

features. Other parameters presented in the literature [13,14] which will increase the dimensionality and  the complexity 

in interpreting the results were not included. 

Table 4 shows that the high-pressure cases have higher volumetric run length values than the low-pressure cases 

compared to sham samples, except for the Z-direction, due to the morphological structure of the low-pressure setting as 

shown in Figure 4 (a). Also, it is worth mentioning that the ratio between the Z-direction run length and the other 

directions shows that the high-pressure setting tends to form structures in the center of the plate as shown in Figure 4 (b), 

while the low-pressure samples tends to grow vertically compared to sham networks which lay down at the bottom of the 

plate as shown in Figure 4 (c).   

The absence of USWF on the sham samples result in a lower rate of biological communication between the cells, which 

is supported by the fact that they have lower volume percentage (VP) in Table 4. On the other hand, low-pressure 

samples have the highest values of VP, since the pressure is enough for the cells to communicate, but not enough to pack 

them into thick bands. The values for the high-pressure samples tend to be in-between except for the 2MHz samples, 

which we noticed that they were always lower in this case. We relate this observation to the effect of changing the 

frequency to a higher setting, which induces the formation of bands more than in the 1MHz samples.  

The overall results show that the high-pressure samples have smoother, more uniform, longer, and densely packed 

structure, while the low-pressure samples tends to have non-uniform, more heterogeneous, shorter, and unpacked 

network structure. Therefore, the quantitative results presented in this work support the qualitative observations made in 

[2,3], that different vascular network morphologies are formed when low versus high pressure amplitudes were used to 

organize cells within the tissue constructs. The algorithm was written using Matlab environment with a run time varies 

between 7 to 12 minutes to finish the analysis of 300 to 400 images.  

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure. 4.  The figure shows different projections of cell formation due to the pressure exposure. (a) 

shows low-pressure exposure with shorter branches. (b) shows high-pressure exposure which forms 

thick bands in the center of the gel, while (c) shows the sham formation with less structure at the 

bottom of the gel. 

(a)  (b) (c)  
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5. CONCLUSION 

In this paper, an algorithm that analyzes three-dimensional vasculature networks in engineered tissues was proposed. The 

algorithm used textural and volumetric parameters for quantitative analysis to provide a more objective and reliable 

monitoring as well as a quantitative comparison between the structures. We showed that combining two different textural 

quantification methods provide a comprehensive overview about the structure's heterogeneity. We also showed that 

expanding the analysis to cover nine orientations in quantifying textural and volumetric features, enabled us to capture 

full three-dimensional changes happen throughout our samples. Other volumetric parameters such as porosity, 

permeability, and diffusion distance were not included, since they don't serve the purpose of comparing totally different 

structures. The algorithm is provided with a standalone Graphical User Interface (GUI) written in MATLAB, which will 

allow the scientists to interact with the algorithm without the need of understanding the code. The GUI also provides 

other functions such as viewing, filtering, or projecting the samples using different techniques. Future work includes 

investigating the effect of other three-dimensional volumetric parameters such as 3D-Fractal Dimension (3D-FD), which 

is commonly used in medical imaging [15], and 3D-Structural Similarity features in order to provide more structural 

information are considered. 
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Table 2. Results obtained during the GLCM textural analysis, where tables 2.1 - 2.5 are the results for different frequency and 

pressure settings. Please see section 3.3 for abbreviations 
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Table 3. Results obtained during the GLRLM textural analysis, where tables 3.1 - 3.3 are the results for different frequency and 

pressure settings. Please see section 3.3 for abbreviations 
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High-Pressure - 1MHz 

Orientation Run Length (pixel) 

(XY)- 0 21.1368 

(XY)- 90 22.4485 

(XY)- 45 15.7031 

(XY)- 135 15.0604 

(YZ)- 90 41.7824 

(YZ)- 45 18.2372 

(YZ)-135 18.0696 

(XZ)- 45 18.9129 

(XZ)- 135 19.1233 

VP(%) 18.25 

Low-Pressure - 1MHz 

Orientation Run Length (pixel) 

(XY)- 0 18.9277 

(XY)- 90 16.8172 

(XY)- 45 11.9076 

(XY)- 135 13.2618 

(YZ)- 90 51.3062 

(YZ)- 45 17.473 

(YZ)-135 16.8228 

(XZ)- 45 15.8074 

(XZ)- 135 15.1676 

VP(%) 19.94 

SHAM - Average 

Orientation Run Length (pixel) 

(XY)- 0 12.7264 

(XY)- 90 11.9908 

(XY)- 45 8.70414 

(XY)- 135 8.7624 

(YZ)- 90 39.7808 

(YZ)- 45 11.7131 

(YZ)-135 11.9107 

(XZ)- 45 11.1859 

(XZ)- 135 11.2041 

VP(%) 16.106 

High-Pressure - 2MHz 

Orientation Run Length (pixel) 

(XY)- 0 26.638 

(XY)- 90 25.5153 

(XY)- 45 18.8382 

(XY)- 135 17.9689 

(YZ)- 90 46.8313 

(YZ)- 45 22.344 

(YZ)-135 21.7345 

(XZ)- 45 21.0303 

(XZ)- 135 22.0405 

VP(%) 14.97 

Low-Pressure - 2MHz 

Orientation Run Length (pixel) 

(XY)- 0 18.4519 

(XY)- 90 16.9146 

(XY)- 45 12.9795 

(XY)- 135 12.1075 

(YZ)- 90 56.3101 

(YZ)- 45 17.0968 

(YZ)-135 17.0008 

(XZ)- 45 16.1014 

(XZ)- 135 15.4534 

VP(%) 22.35 

Table 4. Results obtained during the volumetric analysis, where tables 4.1 - 4.5 are the results for different frequency and pressure 

settings. 

Table 4.3. Volumetric results for Averaged SHAM 

Table 4.4. Volumetric results for 2MHz - 0.2 MPa Table 4.5. Volumetric results for 2MHz - 0.08 MPa 

Table 4.1. Volumetric results for 1MHz - 0.3 MPa Table 4.2. Volumetric results for 1MHz - 0.1 MPa 
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